Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-1 * x^{2} - x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-1)^{2} - 4 *(-1) * 0\) = \(1 \) = 1

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+1 + \sqrt{1}}{2*(-1)}\) = \(\frac{+1 + 1}{-2}\) = -1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+1 - \sqrt{1}}{2*(-1)}\) = \(\frac{+1 - 1}{-2}\) = 0

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-1}{-1}*x+\frac{0}{-1}\) = \(x^{2} + x \)

Итого, имеем приведенное уравнение:
\(x^{2} + x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=-1\)

Методом подбора получаем:
\(x_{1} = -1\)
\(x_{2} = 0\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-1*(x+1)*(x) = 0\)


Основной калькулятор для решения квадратных уравнений

Добавить комментарий