Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

ax2+bx+c = 1x2+9x20 = 0

Дискриминант:

D=b24ac = 924(1)(20) = 8180 = 1

Корни квадратного уравнения:

x1=b+D2a = 9+12(1) = 9+12 = 4

x2=bD2a = 912(1) = 912 = 5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
aax2+bax+ca = x2+91x+201 = x29x+20

Итого, имеем приведенное уравнение:
x29x+20=0

Теорема Виета выглядит следующим образом:
x1x2=c
x1+x2=b

Мы получаем следующую систему уравнений:
x1x2=20
x1+x2=9

Методом подбора получаем:
x1=4
x2=5

Разложение на множители

Разложение происходит по формуле:
a(xx1)(xx2)=0

То есть у нас получается:
1(x4)(x5)=0

Основной калькулятор для решения квадратных уравнений

График функции y = x²+9x-20

[plotting_graphs func='x^2+9x-20']

Добавить комментарий