Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(1 * x^{2} + 7 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(7^{2} - 4 * 0\) = \(49 \) = 49

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-7 + \sqrt{49}}{2*1}\) = \(\frac{-7 + 7}{2}\) = 0

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-7 - \sqrt{49}}{2*1}\) = \(\frac{-7 - 7}{2}\) = -7

Решение по теореме Виета

Преобразование в приведённый вид

Наше уравнение уже является приведенным так как коэффициент a = 1

Итого, имеем приведенное уравнение:
\(x^{2} + 7 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=-7\)

Методом подбора получаем:
\(x_{1} = 0\)
\(x_{2} = -7\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(1*(x)*(x+7) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = x²+7x

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = x^2+7x

Показать/скрыть таблицу точек
x f(x)
-1030
-9.523.75
-918
-8.512.75
-88
-7.53.75
-70
-6.5-3.25
-6-6
-5.5-8.25
-5-10
-4.5-11.25
-4-12
-3.5-12.25
-3-12
-2.5-11.25
-2-10
-1.5-8.25
-1-6
-0.5-3.25
00
0.53.75
18
1.512.75
218
2.523.75
330
3.536.75
444
4.551.75
560
5.568.75
678
6.587.75
798
7.5108.75
8120
8.5131.75
9144
9.5156.75
10170

Добавить комментарий