Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-1 * x^{2} + 2 * x + 3\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(2^{2} - 4 *(-1) * 3\) = \(4 +12\) = 16

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-2 + \sqrt{16}}{2*(-1)}\) = \(\frac{-2 + 4}{-2}\) = -1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-2 - \sqrt{16}}{2*(-1)}\) = \(\frac{-2 - 4}{-2}\) = 3

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{2}{-1}*x+\frac{3}{-1}\) = \(x^{2} -2 * x -3\)

Итого, имеем приведенное уравнение:
\(x^{2} -2 * x -3 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-3\)
\(x_{1}+x_{2}=2\)

Методом подбора получаем:
\(x_{1} = -1\)
\(x_{2} = 3\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-1*(x+1)*(x-3) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = x²+2x+3

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = x^2+2x+3

Показать/скрыть таблицу точек
x f(x)
-1083
-9.574.25
-966
-8.558.25
-851
-7.544.25
-738
-6.532.25
-627
-5.522.25
-518
-4.514.25
-411
-3.58.25
-36
-2.54.25
-23
-1.52.25
-12
-0.52.25
03
0.54.25
16
1.58.25
211
2.514.25
318
3.522.25
427
4.532.25
538
5.544.25
651
6.558.25
766
7.574.25
883
8.592.25
9102
9.5112.25
10123

Добавить комментарий