Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(1 * x^{2} + 2 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(2^{2} - 4 * 0\) = \(4 \) = 4

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-2 + \sqrt{4}}{2*1}\) = \(\frac{-2 + 2}{2}\) = 0

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-2 - \sqrt{4}}{2*1}\) = \(\frac{-2 - 2}{2}\) = -2

Решение по теореме Виета

Преобразование в приведённый вид

Наше уравнение уже является приведенным так как коэффициент a = 1

Итого, имеем приведенное уравнение:
\(x^{2} + 2 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=-2\)

Методом подбора получаем:
\(x_{1} = 0\)
\(x_{2} = -2\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(1*(x)*(x+2) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = x²+2x

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = x^2+2x

Показать/скрыть таблицу точек
x f(x)
-1080
-9.571.25
-963
-8.555.25
-848
-7.541.25
-735
-6.529.25
-624
-5.519.25
-515
-4.511.25
-48
-3.55.25
-33
-2.51.25
-20
-1.5-0.75
-1-1
-0.5-0.75
00
0.51.25
13
1.55.25
28
2.511.25
315
3.519.25
424
4.529.25
535
5.541.25
648
6.555.25
763
7.571.25
880
8.589.25
999
9.5109.25
10120

Похожие калькуляторы:

Добавить комментарий