Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-1 * x^{2} + 1\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(0^{2} - 4 *(-1) * 1\) = \(0 +4\) = 4

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{ + \sqrt{4}}{2*(-1)}\) = \(\frac{ + 2}{-2}\) = -1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{ - \sqrt{4}}{2*(-1)}\) = \(\frac{ - 2}{-2}\) = 1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{0}{-1}*x+\frac{1}{-1}\) = \(x^{2} -1\)

Итого, имеем приведенное уравнение:
\(x^{2} -1 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-1\)
\(x_{1}+x_{2}=0\)

Методом подбора получаем:
\(x_{1} = -1\)
\(x_{2} = 1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-1*(x+1)*(x-1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = x²+1

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = x^2+1

Показать/скрыть таблицу точек
x f(x)
-10101
-9.591.25
-982
-8.573.25
-865
-7.557.25
-750
-6.543.25
-637
-5.531.25
-526
-4.521.25
-417
-3.513.25
-310
-2.57.25
-25
-1.53.25
-12
-0.51.25
01
0.51.25
12
1.53.25
25
2.57.25
310
3.513.25
417
4.521.25
526
5.531.25
637
6.543.25
750
7.557.25
865
8.573.25
982
9.591.25
10101

Похожие калькуляторы:

Добавить комментарий