Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(1 * x^{2} + 10 * x + 16\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(10^{2} - 4 * 16\) = \(100 - 64\) = 36

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-10 + \sqrt{36}}{2*1}\) = \(\frac{-10 + 6}{2}\) = -2

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-10 - \sqrt{36}}{2*1}\) = \(\frac{-10 - 6}{2}\) = -8

Решение по теореме Виета

Преобразование в приведённый вид

Наше уравнение уже является приведенным так как коэффициент a = 1

Итого, имеем приведенное уравнение:
\(x^{2} + 10 * x + 16 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=16\)
\(x_{1}+x_{2}=-10\)

Методом подбора получаем:
\(x_{1} = -2\)
\(x_{2} = -8\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(1*(x+2)*(x+8) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = x²+10x+16

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = x^2+10x+16

Показать/скрыть таблицу точек
x f(x)
-1016
-9.511.25
-97
-8.53.25
-80
-7.5-2.75
-7-5
-6.5-6.75
-6-8
-5.5-8.75
-5-9
-4.5-8.75
-4-8
-3.5-6.75
-3-5
-2.5-2.75
-20
-1.53.25
-17
-0.511.25
016
0.521.25
127
1.533.25
240
2.547.25
355
3.563.25
472
4.581.25
591
5.5101.25
6112
6.5123.25
7135
7.5147.25
8160
8.5173.25
9187
9.5201.25
10216

Похожие калькуляторы:

Добавить комментарий