Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(1 * x^{2} - 4 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-4)^{2} - 4 * 0\) = \(16 \) = 16

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+4 + \sqrt{16}}{2*1}\) = \(\frac{+4 + 4}{2}\) = 4

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+4 - \sqrt{16}}{2*1}\) = \(\frac{+4 - 4}{2}\) = 0

Решение по теореме Виета

Преобразование в приведённый вид

Наше уравнение уже является приведенным так как коэффициент a = 1

Итого, имеем приведенное уравнение:
\(x^{2} -4 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=4\)

Методом подбора получаем:
\(x_{1} = 4\)
\(x_{2} = 0\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(1*(x-4)*(x) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = x²-4x

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = x^2-4x

Показать/скрыть таблицу точек
x f(x)
-10140
-9.5128.25
-9117
-8.5106.25
-896
-7.586.25
-777
-6.568.25
-660
-5.552.25
-545
-4.538.25
-432
-3.526.25
-321
-2.516.25
-212
-1.58.25
-15
-0.52.25
00
0.5-1.75
1-3
1.5-3.75
2-4
2.5-3.75
3-3
3.5-1.75
40
4.52.25
55
5.58.25
612
6.516.25
721
7.526.25
832
8.538.25
945
9.552.25
1060

Похожие калькуляторы:

Добавить комментарий