Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-6 * x^{2} + 9 * x + 6\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(9^{2} - 4 *(-6) * 6\) = \(81 +144\) = 225

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-9 + \sqrt{225}}{2*(-6)}\) = \(\frac{-9 + 15}{-12}\) = -0.5 (-1/2)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-9 - \sqrt{225}}{2*(-6)}\) = \(\frac{-9 - 15}{-12}\) = 2

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{9}{-6}*x+\frac{6}{-6}\) = \(x^{2} -1.5 * x -1\)

Итого, имеем приведенное уравнение:
\(x^{2} -1.5 * x -1 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-1\)
\(x_{1}+x_{2}=1.5\)

Методом подбора получаем:
\(x_{1} = -0.5 (-1/2)\)
\(x_{2} = 2\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-6*(x+0.5)*(x-2) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -6x²+9x+6

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -6x^2+9x+6

Показать/скрыть таблицу точек
x f(x)
-10-684
-9.5-621
-9-561
-8.5-504
-8-450
-7.5-399
-7-351
-6.5-306
-6-264
-5.5-225
-5-189
-4.5-156
-4-126
-3.5-99
-3-75
-2.5-54
-2-36
-1.5-21
-1-9
-0.50
06
0.59
19
1.56
20
2.5-9
3-21
3.5-36
4-54
4.5-75
5-99
5.5-126
6-156
6.5-189
7-225
7.5-264
8-306
8.5-351
9-399
9.5-450
10-504

Похожие калькуляторы:

Добавить комментарий