Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

ax2+bx+c = 6x2+8x = 0

Дискриминант:

D=b24ac = 824(6)0 = 64 = 64

Корни квадратного уравнения:

x1=b+D2a = 8+642(6) = 8+812 = 0

x2=bD2a = 8642(6) = 8812 = 1.33

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
aax2+bax+ca = x2+86x+06 = x21.33x

Итого, имеем приведенное уравнение:
x21.33x=0

Теорема Виета выглядит следующим образом:
x1x2=c
x1+x2=b

Мы получаем следующую систему уравнений:
x1x2=0
x1+x2=1.33

Методом подбора получаем:
x1=0
x2=1.33

Разложение на множители

Разложение происходит по формуле:
a(xx1)(xx2)=0

То есть у нас получается:
6(x)(x1.33)=0

Основной калькулятор для решения квадратных уравнений

График функции y = -6x²+8x

[plotting_graphs func='-6x^2+8x']

Добавить комментарий