Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-6 * x^{2} + 3 * x + 9\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(3^{2} - 4 *(-6) * 9\) = \(9 +216\) = 225

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-3 + \sqrt{225}}{2*(-6)}\) = \(\frac{-3 + 15}{-12}\) = -1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-3 - \sqrt{225}}{2*(-6)}\) = \(\frac{-3 - 15}{-12}\) = 1.5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{3}{-6}*x+\frac{9}{-6}\) = \(x^{2} -0.5 * x -1.5\)

Итого, имеем приведенное уравнение:
\(x^{2} -0.5 * x -1.5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-1.5\)
\(x_{1}+x_{2}=0.5\)

Методом подбора получаем:
\(x_{1} = -1\)
\(x_{2} = 1.5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-6*(x+1)*(x-1.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -6x²+3x+9

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -6x^2+3x+9

Показать/скрыть таблицу точек
x f(x)
-10-621
-9.5-561
-9-504
-8.5-450
-8-399
-7.5-351
-7-306
-6.5-264
-6-225
-5.5-189
-5-156
-4.5-126
-4-99
-3.5-75
-3-54
-2.5-36
-2-21
-1.5-9
-10
-0.56
09
0.59
16
1.50
2-9
2.5-21
3-36
3.5-54
4-75
4.5-99
5-126
5.5-156
6-189
6.5-225
7-264
7.5-306
8-351
8.5-399
9-450
9.5-504
10-561

Похожие калькуляторы:

Добавить комментарий