Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-6 * x^{2} + 12 * x - 6\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(12^{2} - 4 *(-6) *(-6)\) = \(144 - 144\) = 0

Корни квадратного уравнения:

\( x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-12 + \sqrt{0}}{2*(-6)}\) = 1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{12}{-6}*x+\frac{-6}{-6}\) = \(x^{2} -2 * x + 1\)

Итого, имеем приведенное уравнение:
\(x^{2} -2 * x + 1 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=1\)
\(x_{1}+x_{2}=2\)

Методом подбора получаем:
\(x_{1} = x_{2} = 1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-6*(x-1)*(x-1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -6x²+12x-6

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -6x^2+12x-6

Показать/скрыть таблицу точек
x f(x)
-10-726
-9.5-661.5
-9-600
-8.5-541.5
-8-486
-7.5-433.5
-7-384
-6.5-337.5
-6-294
-5.5-253.5
-5-216
-4.5-181.5
-4-150
-3.5-121.5
-3-96
-2.5-73.5
-2-54
-1.5-37.5
-1-24
-0.5-13.5
0-6
0.5-1.5
10
1.5-1.5
2-6
2.5-13.5
3-24
3.5-37.5
4-54
4.5-73.5
5-96
5.5-121.5
6-150
6.5-181.5
7-216
7.5-253.5
8-294
8.5-337.5
9-384
9.5-433.5
10-486

Похожие калькуляторы:

Добавить комментарий