Калькулятор квадратных уравнений
Введите данные:
Округление:
* - обязательно заполнить
Уравнение:
\(a * x^{2} + b * x + c\) = \(-6 * x^{2} - 2 * x \) = 0
Дискриминант:
\(D = b^{2} - 4 * a * c\) = \((-2)^{2} - 4 *(-6) * 0\) = \(4 \) = 4
Корни квадратного уравнения:
\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+2 + \sqrt{4}}{2*(-6)}\) = \(\frac{+2 + 2}{-12}\) = -0.33 (-1/3)
\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+2 - \sqrt{4}}{2*(-6)}\) = \(\frac{+2 - 2}{-12}\) = 0
Решение по теореме Виета
Преобразование в приведённый вид
Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-2}{-6}*x+\frac{0}{-6}\) = \(x^{2} + 0.33 * x \)
Итого, имеем приведенное уравнение:
\(x^{2} + 0.33 * x = 0\)
Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)
Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=-0.33\)
Методом подбора получаем:
\(x_{1} = -0.33 (-1/3)\)
\(x_{2} = 0\)
Разложение на множители
Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)
То есть у нас получается:
\(-6*(x+0.33)*(x) = 0\)
Основной калькулятор для решения квадратных уравнений