Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-5 * x^{2} + 14 * x + 3\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(14^{2} - 4 *(-5) * 3\) = \(196 +60\) = 256

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-14 + \sqrt{256}}{2*(-5)}\) = \(\frac{-14 + 16}{-10}\) = -0.2 (-1/5)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-14 - \sqrt{256}}{2*(-5)}\) = \(\frac{-14 - 16}{-10}\) = 3

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{14}{-5}*x+\frac{3}{-5}\) = \(x^{2} -2.8 * x -0.6\)

Итого, имеем приведенное уравнение:
\(x^{2} -2.8 * x -0.6 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-0.6\)
\(x_{1}+x_{2}=2.8\)

Методом подбора получаем:
\(x_{1} = -0.2 (-1/5)\)
\(x_{2} = 3\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-5*(x+0.2)*(x-3) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -5x²+14x+3

[plotting_graphs func='-5x^2+14x+3']

Добавить комментарий