Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-5 * x^{2} - 6 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-6)^{2} - 4 *(-5) * 0\) = \(36 \) = 36

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+6 + \sqrt{36}}{2*(-5)}\) = \(\frac{+6 + 6}{-10}\) = -1.2

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+6 - \sqrt{36}}{2*(-5)}\) = \(\frac{+6 - 6}{-10}\) = 0

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-6}{-5}*x+\frac{0}{-5}\) = \(x^{2} + 1.2 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} + 1.2 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=-1.2\)

Методом подбора получаем:
\(x_{1} = -1.2\)
\(x_{2} = 0\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-5*(x+1.2)*(x) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -5x²-6x

[plotting_graphs func='-5x^2-6x']

Добавить комментарий