Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-4 * x^{2} + 18 * x - 20\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(18^{2} - 4 *(-4) *(-20)\) = \(324 - 320\) = 4

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-18 + \sqrt{4}}{2*(-4)}\) = \(\frac{-18 + 2}{-8}\) = 2

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-18 - \sqrt{4}}{2*(-4)}\) = \(\frac{-18 - 2}{-8}\) = 2.5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{18}{-4}*x+\frac{-20}{-4}\) = \(x^{2} -4.5 * x + 5\)

Итого, имеем приведенное уравнение:
\(x^{2} -4.5 * x + 5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=5\)
\(x_{1}+x_{2}=4.5\)

Методом подбора получаем:
\(x_{1} = 2\)
\(x_{2} = 2.5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-4*(x-2)*(x-2.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -4x²+18x-20

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -4x^2+18x-20

Показать/скрыть таблицу точек
x f(x)
-10-600
-9.5-552
-9-506
-8.5-462
-8-420
-7.5-380
-7-342
-6.5-306
-6-272
-5.5-240
-5-210
-4.5-182
-4-156
-3.5-132
-3-110
-2.5-90
-2-72
-1.5-56
-1-42
-0.5-30
0-20
0.5-12
1-6
1.5-2
20
2.50
3-2
3.5-6
4-12
4.5-20
5-30
5.5-42
6-56
6.5-72
7-90
7.5-110
8-132
8.5-156
9-182
9.5-210
10-240

Похожие калькуляторы:

Добавить комментарий