Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-4 * x^{2} - 4 * x - 1\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-4)^{2} - 4 *(-4) *(-1)\) = \(16 - 16\) = 0

Корни квадратного уравнения:

\( x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+4 + \sqrt{0}}{2*(-4)}\) = -0.5 (-1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-4}{-4}*x+\frac{-1}{-4}\) = \(x^{2} + x + 0.25\)

Итого, имеем приведенное уравнение:
\(x^{2} + x + 0.25 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0.25\)
\(x_{1}+x_{2}=-1\)

Методом подбора получаем:
\(x_{1} = x_{2} = -0.5 (-1/2)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-4*(x+0.5)*(x+0.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -4x²-4x-1

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -4x^2-4x-1

Показать/скрыть таблицу точек
xf(x)
-10-361
-9.5-324
-9-289
-8.5-256
-8-225
-7.5-196
-7-169
-6.5-144
-6-121
-5.5-100
-5-81
-4.5-64
-4-49
-3.5-36
-3-25
-2.5-16
-2-9
-1.5-4
-1-1
-0.50
0-1
0.5-4
1-9
1.5-16
2-25
2.5-36
3-49
3.5-64
4-81
4.5-100
5-121
5.5-144
6-169
6.5-196
7-225
7.5-256
8-289
8.5-324
9-361
9.5-400
10-441

Похожие калькуляторы:

Добавить комментарий