Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-2 * x^{2} + 6 * x + 20\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(6^{2} - 4 *(-2) * 20\) = \(36 +160\) = 196

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-6 + \sqrt{196}}{2*(-2)}\) = \(\frac{-6 + 14}{-4}\) = -2

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-6 - \sqrt{196}}{2*(-2)}\) = \(\frac{-6 - 14}{-4}\) = 5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{6}{-2}*x+\frac{20}{-2}\) = \(x^{2} -3 * x -10\)

Итого, имеем приведенное уравнение:
\(x^{2} -3 * x -10 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-10\)
\(x_{1}+x_{2}=3\)

Методом подбора получаем:
\(x_{1} = -2\)
\(x_{2} = 5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-2*(x+2)*(x-5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -2x²+6x+20

[plotting_graphs func='-2x^2+6x+20']

Добавить комментарий