Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-2 * x^{2} + 11 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(11^{2} - 4 *(-2) * 0\) = \(121 \) = 121

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-11 + \sqrt{121}}{2*(-2)}\) = \(\frac{-11 + 11}{-4}\) = 0

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-11 - \sqrt{121}}{2*(-2)}\) = \(\frac{-11 - 11}{-4}\) = 5.5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{11}{-2}*x+\frac{0}{-2}\) = \(x^{2} -5.5 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} -5.5 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=5.5\)

Методом подбора получаем:
\(x_{1} = 0\)
\(x_{2} = 5.5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-2*(x)*(x-5.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -2x²+11x

[plotting_graphs func='-2x^2+11x']

Добавить комментарий