Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-15 * x^{2} + 3 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(3^{2} - 4 *(-15) * 0\) = \(9 \) = 9

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-3 + \sqrt{9}}{2*(-15)}\) = \(\frac{-3 + 3}{-30}\) = 0

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-3 - \sqrt{9}}{2*(-15)}\) = \(\frac{-3 - 3}{-30}\) = 0.2 (1/5)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{3}{-15}*x+\frac{0}{-15}\) = \(x^{2} -0.2 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} -0.2 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=0.2\)

Методом подбора получаем:
\(x_{1} = 0\)
\(x_{2} = 0.2 (1/5)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-15*(x)*(x-0.2) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -15x²+3x

[plotting_graphs func='-15x^2+3x']

Добавить комментарий