Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

ax2+bx+c = 8x218x10 = 0

Дискриминант:

D=b24ac = (18)24(8)(10) = 324320 = 4

Корни квадратного уравнения:

x1=b+D2a = +18+42(8) = +18+216 = -1.25

x2=bD2a = +1842(8) = +18216 = -1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
aax2+bax+ca = x2+188x+108 = x2+2.25x+1.25

Итого, имеем приведенное уравнение:
x2+2.25x+1.25=0

Теорема Виета выглядит следующим образом:
x1x2=c
x1+x2=b

Мы получаем следующую систему уравнений:
x1x2=1.25
x1+x2=2.25

Методом подбора получаем:
x1=1.25
x2=1

Разложение на множители

Разложение происходит по формуле:
a(xx1)(xx2)=0

То есть у нас получается:
8(x+1.25)(x+1)=0

Основной калькулятор для решения квадратных уравнений

График функции y = -8x²-18x-10

[plotting_graphs func='-8x^2-18x-10']

Добавить комментарий