Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(6 * x^{2} + 9 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(9^{2} - 4 * 6 * 0\) = \(81 \) = 81

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-9 + \sqrt{81}}{2*6}\) = \(\frac{-9 + 9}{12}\) = 0

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-9 - \sqrt{81}}{2*6}\) = \(\frac{-9 - 9}{12}\) = -1.5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{9}{6}*x+\frac{0}{6}\) = \(x^{2} + 1.5 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} + 1.5 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=-1.5\)

Методом подбора получаем:
\(x_{1} = 0\)
\(x_{2} = -1.5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(6*(x)*(x+1.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 6x²+9x

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 6x^2+9x

Показать/скрыть таблицу точек
x f(x)
-10510
-9.5456
-9405
-8.5357
-8312
-7.5270
-7231
-6.5195
-6162
-5.5132
-5105
-4.581
-460
-3.542
-327
-2.515
-26
-1.50
-1-3
-0.5-3
00
0.56
115
1.527
242
2.560
381
3.5105
4132
4.5162
5195
5.5231
6270
6.5312
7357
7.5405
8456
8.5510
9567
9.5627
10690

Похожие калькуляторы:

Добавить комментарий