Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(6 * x^{2} + 16 * x + 10\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(16^{2} - 4 * 6 * 10\) = \(256 - 240\) = 16

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-16 + \sqrt{16}}{2*6}\) = \(\frac{-16 + 4}{12}\) = -1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-16 - \sqrt{16}}{2*6}\) = \(\frac{-16 - 4}{12}\) = -1.67

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{16}{6}*x+\frac{10}{6}\) = \(x^{2} + 2.67 * x + 1.67\)

Итого, имеем приведенное уравнение:
\(x^{2} + 2.67 * x + 1.67 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=1.67\)
\(x_{1}+x_{2}=-2.67\)

Методом подбора получаем:
\(x_{1} = -1\)
\(x_{2} = -1.67\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(6*(x+1)*(x+1.67) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 6x²+16x+10

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 6x^2+16x+10

Показать/скрыть таблицу точек
x f(x)
-10450
-9.5399.5
-9352
-8.5307.5
-8266
-7.5227.5
-7192
-6.5159.5
-6130
-5.5103.5
-580
-4.559.5
-442
-3.527.5
-316
-2.57.5
-22
-1.5-0.5
-10
-0.53.5
010
0.519.5
132
1.547.5
266
2.587.5
3112
3.5139.5
4170
4.5203.5
5240
5.5279.5
6322
6.5367.5
7416
7.5467.5
8522
8.5579.5
9640
9.5703.5
10770

Добавить комментарий