Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(6 * x^{2} - 9 * x - 6\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-9)^{2} - 4 * 6 *(-6)\) = \(81 +144\) = 225

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+9 + \sqrt{225}}{2*6}\) = \(\frac{+9 + 15}{12}\) = 2

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+9 - \sqrt{225}}{2*6}\) = \(\frac{+9 - 15}{12}\) = -0.5 (-1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-9}{6}*x+\frac{-6}{6}\) = \(x^{2} -1.5 * x -1\)

Итого, имеем приведенное уравнение:
\(x^{2} -1.5 * x -1 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-1\)
\(x_{1}+x_{2}=1.5\)

Методом подбора получаем:
\(x_{1} = 2\)
\(x_{2} = -0.5 (-1/2)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(6*(x-2)*(x+0.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 6x²-9x-6

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 6x^2-9x-6

Показать/скрыть таблицу точек
x f(x)
-10684
-9.5621
-9561
-8.5504
-8450
-7.5399
-7351
-6.5306
-6264
-5.5225
-5189
-4.5156
-4126
-3.599
-375
-2.554
-236
-1.521
-19
-0.50
0-6
0.5-9
1-9
1.5-6
20
2.59
321
3.536
454
4.575
599
5.5126
6156
6.5189
7225
7.5264
8306
8.5351
9399
9.5450
10504

Добавить комментарий