Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-6 * x^{2} - 8 * x - 2\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-8)^{2} - 4 *(-6) *(-2)\) = \(64 - 48\) = 16

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+8 + \sqrt{16}}{2*(-6)}\) = \(\frac{+8 + 4}{-12}\) = -1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+8 - \sqrt{16}}{2*(-6)}\) = \(\frac{+8 - 4}{-12}\) = -0.33 (-1/3)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-8}{-6}*x+\frac{-2}{-6}\) = \(x^{2} + 1.33 * x + 0.33\)

Итого, имеем приведенное уравнение:
\(x^{2} + 1.33 * x + 0.33 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0.33\)
\(x_{1}+x_{2}=-1.33\)

Методом подбора получаем:
\(x_{1} = -1\)
\(x_{2} = -0.33 (-1/3)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-6*(x+1)*(x+0.33) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -6x²-8x-2

[plotting_graphs func='-6x^2-8x-2']

Добавить комментарий