Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(6 * x^{2} - 19 * x + 8\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-19)^{2} - 4 * 6 * 8\) = \(361 - 192\) = 169

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+19 + \sqrt{169}}{2*6}\) = \(\frac{+19 + 13}{12}\) = 2.67

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+19 - \sqrt{169}}{2*6}\) = \(\frac{+19 - 13}{12}\) = 0.5 (1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-19}{6}*x+\frac{8}{6}\) = \(x^{2} -3.17 * x + 1.33\)

Итого, имеем приведенное уравнение:
\(x^{2} -3.17 * x + 1.33 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=1.33\)
\(x_{1}+x_{2}=3.17\)

Методом подбора получаем:
\(x_{1} = 2.67\)
\(x_{2} = 0.5 (1/2)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(6*(x-2.67)*(x-0.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 6x²-19x+8

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 6x^2-19x+8

Показать/скрыть таблицу точек
x f(x)
-10798
-9.5730
-9665
-8.5603
-8544
-7.5488
-7435
-6.5385
-6338
-5.5294
-5253
-4.5215
-4180
-3.5148
-3119
-2.593
-270
-1.550
-133
-0.519
08
0.50
1-5
1.5-7
2-6
2.5-2
35
3.515
428
4.544
563
5.585
6110
6.5138
7169
7.5203
8240
8.5280
9323
9.5369
10418

Добавить комментарий