Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(6 * x^{2} - 19 * x + 15\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-19)^{2} - 4 * 6 * 15\) = \(361 - 360\) = 1

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+19 + \sqrt{1}}{2*6}\) = \(\frac{+19 + 1}{12}\) = 1.67

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+19 - \sqrt{1}}{2*6}\) = \(\frac{+19 - 1}{12}\) = 1.5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-19}{6}*x+\frac{15}{6}\) = \(x^{2} -3.17 * x + 2.5\)

Итого, имеем приведенное уравнение:
\(x^{2} -3.17 * x + 2.5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=2.5\)
\(x_{1}+x_{2}=3.17\)

Методом подбора получаем:
\(x_{1} = 1.67\)
\(x_{2} = 1.5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(6*(x-1.67)*(x-1.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 6x²-19x+15

[plotting_graphs func='6x^2-19x+15']

Добавить комментарий