Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-5 * x^{2} + 16 * x - 3\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(16^{2} - 4 *(-5) *(-3)\) = \(256 - 60\) = 196

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-16 + \sqrt{196}}{2*(-5)}\) = \(\frac{-16 + 14}{-10}\) = 0.2 (1/5)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-16 - \sqrt{196}}{2*(-5)}\) = \(\frac{-16 - 14}{-10}\) = 3

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{16}{-5}*x+\frac{-3}{-5}\) = \(x^{2} -3.2 * x + 0.6\)

Итого, имеем приведенное уравнение:
\(x^{2} -3.2 * x + 0.6 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0.6\)
\(x_{1}+x_{2}=3.2\)

Методом подбора получаем:
\(x_{1} = 0.2 (1/5)\)
\(x_{2} = 3\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-5*(x-0.2)*(x-3) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -5x²+16x-3

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -5x^2+16x-3

Показать/скрыть таблицу точек
x f(x)
-10-663
-9.5-606.25
-9-552
-8.5-500.25
-8-451
-7.5-404.25
-7-360
-6.5-318.25
-6-279
-5.5-242.25
-5-208
-4.5-176.25
-4-147
-3.5-120.25
-3-96
-2.5-74.25
-2-55
-1.5-38.25
-1-24
-0.5-12.25
0-3
0.53.75
18
1.59.75
29
2.55.75
30
3.5-8.25
4-19
4.5-32.25
5-48
5.5-66.25
6-87
6.5-110.25
7-136
7.5-164.25
8-195
8.5-228.25
9-264
9.5-302.25
10-343

Добавить комментарий