Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(5 * x^{2} - 18 * x + 9\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-18)^{2} - 4 * 5 * 9\) = \(324 - 180\) = 144

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+18 + \sqrt{144}}{2*5}\) = \(\frac{+18 + 12}{10}\) = 3

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+18 - \sqrt{144}}{2*5}\) = \(\frac{+18 - 12}{10}\) = 0.6 (3/5)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-18}{5}*x+\frac{9}{5}\) = \(x^{2} -3.6 * x + 1.8\)

Итого, имеем приведенное уравнение:
\(x^{2} -3.6 * x + 1.8 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=1.8\)
\(x_{1}+x_{2}=3.6\)

Методом подбора получаем:
\(x_{1} = 3\)
\(x_{2} = 0.6 (3/5)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(5*(x-3)*(x-0.6) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 5x²-18x+9

[plotting_graphs func='5x^2-18x+9']

Добавить комментарий