Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(5 * x^{2} - 15 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-15)^{2} - 4 * 5 * 0\) = \(225 \) = 225

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+15 + \sqrt{225}}{2*5}\) = \(\frac{+15 + 15}{10}\) = 3

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+15 - \sqrt{225}}{2*5}\) = \(\frac{+15 - 15}{10}\) = 0

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-15}{5}*x+\frac{0}{5}\) = \(x^{2} -3 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} -3 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=3\)

Методом подбора получаем:
\(x_{1} = 3\)
\(x_{2} = 0\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(5*(x-3)*(x) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 5x²-15x

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 5x^2-15x

Показать/скрыть таблицу точек
x f(x)
-10650
-9.5593.75
-9540
-8.5488.75
-8440
-7.5393.75
-7350
-6.5308.75
-6270
-5.5233.75
-5200
-4.5168.75
-4140
-3.5113.75
-390
-2.568.75
-250
-1.533.75
-120
-0.58.75
00
0.5-6.25
1-10
1.5-11.25
2-10
2.5-6.25
30
3.58.75
420
4.533.75
550
5.568.75
690
6.5113.75
7140
7.5168.75
8200
8.5233.75
9270
9.5308.75
10350

Похожие калькуляторы:

Добавить комментарий