Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(4 * x^{2} + 6 * x - 10\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(6^{2} - 4 * 4 *(-10)\) = \(36 +160\) = 196

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-6 + \sqrt{196}}{2*4}\) = \(\frac{-6 + 14}{8}\) = 1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-6 - \sqrt{196}}{2*4}\) = \(\frac{-6 - 14}{8}\) = -2.5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{6}{4}*x+\frac{-10}{4}\) = \(x^{2} + 1.5 * x -2.5\)

Итого, имеем приведенное уравнение:
\(x^{2} + 1.5 * x -2.5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-2.5\)
\(x_{1}+x_{2}=-1.5\)

Методом подбора получаем:
\(x_{1} = 1\)
\(x_{2} = -2.5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(4*(x-1)*(x+2.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 4x²+6x-10

[plotting_graphs func='4x^2+6x-10']

Добавить комментарий