Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-4 * x^{2} + 4 * x - 1\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(4^{2} - 4 *(-4) *(-1)\) = \(16 - 16\) = 0

Корни квадратного уравнения:

\( x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-4 + \sqrt{0}}{2*(-4)}\) = 0.5 (1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{4}{-4}*x+\frac{-1}{-4}\) = \(x^{2} -1 * x + 0.25\)

Итого, имеем приведенное уравнение:
\(x^{2} -1 * x + 0.25 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0.25\)
\(x_{1}+x_{2}=1\)

Методом подбора получаем:
\(x_{1} = x_{2} = 0.5 (1/2)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-4*(x-0.5)*(x-0.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -4x²+4x-1

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -4x^2+4x-1

Показать/скрыть таблицу точек
x f(x)
-10-441
-9.5-400
-9-361
-8.5-324
-8-289
-7.5-256
-7-225
-6.5-196
-6-169
-5.5-144
-5-121
-4.5-100
-4-81
-3.5-64
-3-49
-2.5-36
-2-25
-1.5-16
-1-9
-0.5-4
0-1
0.50
1-1
1.5-4
2-9
2.5-16
3-25
3.5-36
4-49
4.5-64
5-81
5.5-100
6-121
6.5-144
7-169
7.5-196
8-225
8.5-256
9-289
9.5-324
10-361

Добавить комментарий