Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(4 * x^{2} + 4 * x - 15\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(4^{2} - 4 * 4 *(-15)\) = \(16 +240\) = 256

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-4 + \sqrt{256}}{2*4}\) = \(\frac{-4 + 16}{8}\) = 1.5

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-4 - \sqrt{256}}{2*4}\) = \(\frac{-4 - 16}{8}\) = -2.5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{4}{4}*x+\frac{-15}{4}\) = \(x^{2} + x -3.75\)

Итого, имеем приведенное уравнение:
\(x^{2} + x -3.75 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-3.75\)
\(x_{1}+x_{2}=-1\)

Методом подбора получаем:
\(x_{1} = 1.5\)
\(x_{2} = -2.5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(4*(x-1.5)*(x+2.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 4x²+4x-15

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 4x^2+4x-15

Показать/скрыть таблицу точек
x f(x)
-10345
-9.5308
-9273
-8.5240
-8209
-7.5180
-7153
-6.5128
-6105
-5.584
-565
-4.548
-433
-3.520
-39
-2.50
-2-7
-1.5-12
-1-15
-0.5-16
0-15
0.5-12
1-7
1.50
29
2.520
333
3.548
465
4.584
5105
5.5128
6153
6.5180
7209
7.5240
8273
8.5308
9345
9.5384
10425

Похожие калькуляторы:

Добавить комментарий