Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(4 * x^{2} + 2 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(2^{2} - 4 * 4 * 0\) = \(4 \) = 4

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-2 + \sqrt{4}}{2*4}\) = \(\frac{-2 + 2}{8}\) = 0

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-2 - \sqrt{4}}{2*4}\) = \(\frac{-2 - 2}{8}\) = -0.5 (-1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{2}{4}*x+\frac{0}{4}\) = \(x^{2} + 0.5 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} + 0.5 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=-0.5\)

Методом подбора получаем:
\(x_{1} = 0\)
\(x_{2} = -0.5 (-1/2)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(4*(x)*(x+0.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 4x²+2x

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 4x^2+2x

Показать/скрыть таблицу точек
x f(x)
-10380
-9.5342
-9306
-8.5272
-8240
-7.5210
-7182
-6.5156
-6132
-5.5110
-590
-4.572
-456
-3.542
-330
-2.520
-212
-1.56
-12
-0.50
00
0.52
16
1.512
220
2.530
342
3.556
472
4.590
5110
5.5132
6156
6.5182
7210
7.5240
8272
8.5306
9342
9.5380
10420

Похожие калькуляторы:

Добавить комментарий