Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(4 * x^{2} + x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(1^{2} - 4 * 4 * 0\) = \(1 \) = 1

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-1 + \sqrt{1}}{2*4}\) = \(\frac{-1 + 1}{8}\) = 0

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-1 - \sqrt{1}}{2*4}\) = \(\frac{-1 - 1}{8}\) = -0.25 (-1/4)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{1}{4}*x+\frac{0}{4}\) = \(x^{2} + 0.25 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} + 0.25 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=-0.25\)

Методом подбора получаем:
\(x_{1} = 0\)
\(x_{2} = -0.25 (-1/4)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(4*(x)*(x+0.25) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 4x²

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 4x^2

Показать/скрыть таблицу точек
x f(x)
-10400
-9.5361
-9324
-8.5289
-8256
-7.5225
-7196
-6.5169
-6144
-5.5121
-5100
-4.581
-464
-3.549
-336
-2.525
-216
-1.59
-14
-0.51
00
0.51
14
1.59
216
2.525
336
3.549
464
4.581
5100
5.5121
6144
6.5169
7196
7.5225
8256
8.5289
9324
9.5361
10400

Похожие калькуляторы:

Добавить комментарий