Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(4 * x^{2} - 6 * x - 4\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-6)^{2} - 4 * 4 *(-4)\) = \(36 +64\) = 100

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+6 + \sqrt{100}}{2*4}\) = \(\frac{+6 + 10}{8}\) = 2

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+6 - \sqrt{100}}{2*4}\) = \(\frac{+6 - 10}{8}\) = -0.5 (-1/2)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-6}{4}*x+\frac{-4}{4}\) = \(x^{2} -1.5 * x -1\)

Итого, имеем приведенное уравнение:
\(x^{2} -1.5 * x -1 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-1\)
\(x_{1}+x_{2}=1.5\)

Методом подбора получаем:
\(x_{1} = 2\)
\(x_{2} = -0.5 (-1/2)\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(4*(x-2)*(x+0.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 4x²-6x-4

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 4x^2-6x-4

Показать/скрыть таблицу точек
x f(x)
-10456
-9.5414
-9374
-8.5336
-8300
-7.5266
-7234
-6.5204
-6176
-5.5150
-5126
-4.5104
-484
-3.566
-350
-2.536
-224
-1.514
-16
-0.50
0-4
0.5-6
1-6
1.5-4
20
2.56
314
3.524
436
4.550
566
5.584
6104
6.5126
7150
7.5176
8204
8.5234
9266
9.5300
10336

Похожие калькуляторы:

Добавить комментарий