Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(4 * x^{2} - 4 * x - 8\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-4)^{2} - 4 * 4 *(-8)\) = \(16 +128\) = 144

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+4 + \sqrt{144}}{2*4}\) = \(\frac{+4 + 12}{8}\) = 2

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+4 - \sqrt{144}}{2*4}\) = \(\frac{+4 - 12}{8}\) = -1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-4}{4}*x+\frac{-8}{4}\) = \(x^{2} -1 * x -2\)

Итого, имеем приведенное уравнение:
\(x^{2} -1 * x -2 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-2\)
\(x_{1}+x_{2}=1\)

Методом подбора получаем:
\(x_{1} = 2\)
\(x_{2} = -1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(4*(x-2)*(x+1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 4x²-4x-8

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 4x^2-4x-8

Показать/скрыть таблицу точек
x f(x)
-10432
-9.5391
-9352
-8.5315
-8280
-7.5247
-7216
-6.5187
-6160
-5.5135
-5112
-4.591
-472
-3.555
-340
-2.527
-216
-1.57
-10
-0.5-5
0-8
0.5-9
1-8
1.5-5
20
2.57
316
3.527
440
4.555
572
5.591
6112
6.5135
7160
7.5187
8216
8.5247
9280
9.5315
10352

Похожие калькуляторы:

Добавить комментарий