Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(4 * x^{2} - 14 * x + 10\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-14)^{2} - 4 * 4 * 10\) = \(196 - 160\) = 36

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+14 + \sqrt{36}}{2*4}\) = \(\frac{+14 + 6}{8}\) = 2.5

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+14 - \sqrt{36}}{2*4}\) = \(\frac{+14 - 6}{8}\) = 1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-14}{4}*x+\frac{10}{4}\) = \(x^{2} -3.5 * x + 2.5\)

Итого, имеем приведенное уравнение:
\(x^{2} -3.5 * x + 2.5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=2.5\)
\(x_{1}+x_{2}=3.5\)

Методом подбора получаем:
\(x_{1} = 2.5\)
\(x_{2} = 1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(4*(x-2.5)*(x-1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 4x²-14x+10

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 4x^2-14x+10

Показать/скрыть таблицу точек
x f(x)
-10550
-9.5504
-9460
-8.5418
-8378
-7.5340
-7304
-6.5270
-6238
-5.5208
-5180
-4.5154
-4130
-3.5108
-388
-2.570
-254
-1.540
-128
-0.518
010
0.54
10
1.5-2
2-2
2.50
34
3.510
418
4.528
540
5.554
670
6.588
7108
7.5130
8154
8.5180
9208
9.5238
10270

Похожие калькуляторы:

Добавить комментарий