Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(4 * x^{2} - 10 * x + 6\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-10)^{2} - 4 * 4 * 6\) = \(100 - 96\) = 4

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+10 + \sqrt{4}}{2*4}\) = \(\frac{+10 + 2}{8}\) = 1.5

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+10 - \sqrt{4}}{2*4}\) = \(\frac{+10 - 2}{8}\) = 1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-10}{4}*x+\frac{6}{4}\) = \(x^{2} -2.5 * x + 1.5\)

Итого, имеем приведенное уравнение:
\(x^{2} -2.5 * x + 1.5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=1.5\)
\(x_{1}+x_{2}=2.5\)

Методом подбора получаем:
\(x_{1} = 1.5\)
\(x_{2} = 1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(4*(x-1.5)*(x-1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 4x²-10x+6

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 4x^2-10x+6

Показать/скрыть таблицу точек
x f(x)
-10506
-9.5462
-9420
-8.5380
-8342
-7.5306
-7272
-6.5240
-6210
-5.5182
-5156
-4.5132
-4110
-3.590
-372
-2.556
-242
-1.530
-120
-0.512
06
0.52
10
1.50
22
2.56
312
3.520
430
4.542
556
5.572
690
6.5110
7132
7.5156
8182
8.5210
9240
9.5272
10306

Похожие калькуляторы:

Добавить комментарий