Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-3 * x^{2} + 8 * x + 11\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(8^{2} - 4 *(-3) * 11\) = \(64 +132\) = 196

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-8 + \sqrt{196}}{2*(-3)}\) = \(\frac{-8 + 14}{-6}\) = -1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-8 - \sqrt{196}}{2*(-3)}\) = \(\frac{-8 - 14}{-6}\) = 3.67

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{8}{-3}*x+\frac{11}{-3}\) = \(x^{2} -2.67 * x -3.67\)

Итого, имеем приведенное уравнение:
\(x^{2} -2.67 * x -3.67 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-3.67\)
\(x_{1}+x_{2}=2.67\)

Методом подбора получаем:
\(x_{1} = -1\)
\(x_{2} = 3.67\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-3*(x+1)*(x-3.67) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -3x²+8x+11

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -3x^2+8x+11

Показать/скрыть таблицу точек
x f(x)
-10-369
-9.5-335.75
-9-304
-8.5-273.75
-8-245
-7.5-217.75
-7-192
-6.5-167.75
-6-145
-5.5-123.75
-5-104
-4.5-85.75
-4-69
-3.5-53.75
-3-40
-2.5-27.75
-2-17
-1.5-7.75
-10
-0.56.25
011
0.514.25
116
1.516.25
215
2.512.25
38
3.52.25
4-5
4.5-13.75
5-24
5.5-35.75
6-49
6.5-63.75
7-80
7.5-97.75
8-117
8.5-137.75
9-160
9.5-183.75
10-209

Добавить комментарий