Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-3 * x^{2} + 20 * x - 17\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(20^{2} - 4 *(-3) *(-17)\) = \(400 - 204\) = 196

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-20 + \sqrt{196}}{2*(-3)}\) = \(\frac{-20 + 14}{-6}\) = 1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-20 - \sqrt{196}}{2*(-3)}\) = \(\frac{-20 - 14}{-6}\) = 5.67

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{20}{-3}*x+\frac{-17}{-3}\) = \(x^{2} -6.67 * x + 5.67\)

Итого, имеем приведенное уравнение:
\(x^{2} -6.67 * x + 5.67 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=5.67\)
\(x_{1}+x_{2}=6.67\)

Методом подбора получаем:
\(x_{1} = 1\)
\(x_{2} = 5.67\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-3*(x-1)*(x-5.67) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -3x²+20x-17

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -3x^2+20x-17

Показать/скрыть таблицу точек
x f(x)
-10-517
-9.5-477.75
-9-440
-8.5-403.75
-8-369
-7.5-335.75
-7-304
-6.5-273.75
-6-245
-5.5-217.75
-5-192
-4.5-167.75
-4-145
-3.5-123.75
-3-104
-2.5-85.75
-2-69
-1.5-53.75
-1-40
-0.5-27.75
0-17
0.5-7.75
10
1.56.25
211
2.514.25
316
3.516.25
415
4.512.25
58
5.52.25
6-5
6.5-13.75
7-24
7.5-35.75
8-49
8.5-63.75
9-80
9.5-97.75
10-117

Добавить комментарий