Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(3 * x^{2} - 3 * x - 6\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-3)^{2} - 4 * 3 *(-6)\) = \(9 +72\) = 81

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+3 + \sqrt{81}}{2*3}\) = \(\frac{+3 + 9}{6}\) = 2

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+3 - \sqrt{81}}{2*3}\) = \(\frac{+3 - 9}{6}\) = -1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-3}{3}*x+\frac{-6}{3}\) = \(x^{2} -1 * x -2\)

Итого, имеем приведенное уравнение:
\(x^{2} -1 * x -2 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-2\)
\(x_{1}+x_{2}=1\)

Методом подбора получаем:
\(x_{1} = 2\)
\(x_{2} = -1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(3*(x-2)*(x+1) = 0\)


Основной калькулятор для решения квадратных уравнений

Похожие калькуляторы:

Добавить комментарий