Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(3 * x^{2} - 10 * x + 7\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-10)^{2} - 4 * 3 * 7\) = \(100 - 84\) = 16

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+10 + \sqrt{16}}{2*3}\) = \(\frac{+10 + 4}{6}\) = 2.33

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+10 - \sqrt{16}}{2*3}\) = \(\frac{+10 - 4}{6}\) = 1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-10}{3}*x+\frac{7}{3}\) = \(x^{2} -3.33 * x + 2.33\)

Итого, имеем приведенное уравнение:
\(x^{2} -3.33 * x + 2.33 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=2.33\)
\(x_{1}+x_{2}=3.33\)

Методом подбора получаем:
\(x_{1} = 2.33\)
\(x_{2} = 1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(3*(x-2.33)*(x-1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 3x²-10x+7

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 3x^2-10x+7

Показать/скрыть таблицу точек
x f(x)
-10407
-9.5372.75
-9340
-8.5308.75
-8279
-7.5250.75
-7224
-6.5198.75
-6175
-5.5152.75
-5132
-4.5112.75
-495
-3.578.75
-364
-2.550.75
-239
-1.528.75
-120
-0.512.75
07
0.52.75
10
1.5-1.25
2-1
2.50.75
34
3.58.75
415
4.522.75
532
5.542.75
655
6.568.75
784
7.5100.75
8119
8.5138.75
9160
9.5182.75
10207

Добавить комментарий