Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

ax2+bx+c = 3x210x8 = 0

Дискриминант:

D=b24ac = (10)243(8) = 100+96 = 196

Корни квадратного уравнения:

x1=b+D2a = +10+19623 = +10+146 = 4

x2=bD2a = +1019623 = +10146 = -0.67 (-2/3)

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
aax2+bax+ca = x2+103x+83 = x23.33x2.67

Итого, имеем приведенное уравнение:
x23.33x2.67=0

Теорема Виета выглядит следующим образом:
x1x2=c
x1+x2=b

Мы получаем следующую систему уравнений:
x1x2=2.67
x1+x2=3.33

Методом подбора получаем:
x1=4
x2=0.67(2/3)

Разложение на множители

Разложение происходит по формуле:
a(xx1)(xx2)=0

То есть у нас получается:
3(x4)(x+0.67)=0

Основной калькулятор для решения квадратных уравнений

График функции y = 3x²-10x-8

[plotting_graphs func='3x^2-10x-8']

Добавить комментарий