Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(-2 * x^{2} + 9 * x + 5\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(9^{2} - 4 *(-2) * 5\) = \(81 +40\) = 121

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-9 + \sqrt{121}}{2*(-2)}\) = \(\frac{-9 + 11}{-4}\) = -0.5 (-1/2)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-9 - \sqrt{121}}{2*(-2)}\) = \(\frac{-9 - 11}{-4}\) = 5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{9}{-2}*x+\frac{5}{-2}\) = \(x^{2} -4.5 * x -2.5\)

Итого, имеем приведенное уравнение:
\(x^{2} -4.5 * x -2.5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-2.5\)
\(x_{1}+x_{2}=4.5\)

Методом подбора получаем:
\(x_{1} = -0.5 (-1/2)\)
\(x_{2} = 5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(-2*(x+0.5)*(x-5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = -2x²+9x+5

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = -2x^2+9x+5

Показать/скрыть таблицу точек
x f(x)
-10-285
-9.5-261
-9-238
-8.5-216
-8-195
-7.5-175
-7-156
-6.5-138
-6-121
-5.5-105
-5-90
-4.5-76
-4-63
-3.5-51
-3-40
-2.5-30
-2-21
-1.5-13
-1-6
-0.50
05
0.59
112
1.514
215
2.515
314
3.512
49
4.55
50
5.5-6
6-13
6.5-21
7-30
7.5-40
8-51
8.5-63
9-76
9.5-90
10-105

Добавить комментарий