Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(2 * x^{2} + 7 * x + 5\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(7^{2} - 4 * 2 * 5\) = \(49 - 40\) = 9

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-7 + \sqrt{9}}{2*2}\) = \(\frac{-7 + 3}{4}\) = -1

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-7 - \sqrt{9}}{2*2}\) = \(\frac{-7 - 3}{4}\) = -2.5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{7}{2}*x+\frac{5}{2}\) = \(x^{2} + 3.5 * x + 2.5\)

Итого, имеем приведенное уравнение:
\(x^{2} + 3.5 * x + 2.5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=2.5\)
\(x_{1}+x_{2}=-3.5\)

Методом подбора получаем:
\(x_{1} = -1\)
\(x_{2} = -2.5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(2*(x+1)*(x+2.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 2x²+7x+5

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 2x^2+7x+5

Показать/скрыть таблицу точек
x f(x)
-10135
-9.5119
-9104
-8.590
-877
-7.565
-754
-6.544
-635
-5.527
-520
-4.514
-49
-3.55
-32
-2.50
-2-1
-1.5-1
-10
-0.52
05
0.59
114
1.520
227
2.535
344
3.554
465
4.577
590
5.5104
6119
6.5135
7152
7.5170
8189
8.5209
9230
9.5252
10275

Добавить комментарий