Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(2 * x^{2} + 7 * x \) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(7^{2} - 4 * 2 * 0\) = \(49 \) = 49

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-7 + \sqrt{49}}{2*2}\) = \(\frac{-7 + 7}{4}\) = 0

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-7 - \sqrt{49}}{2*2}\) = \(\frac{-7 - 7}{4}\) = -3.5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{7}{2}*x+\frac{0}{2}\) = \(x^{2} + 3.5 * x \)

Итого, имеем приведенное уравнение:
\(x^{2} + 3.5 * x = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=0\)
\(x_{1}+x_{2}=-3.5\)

Методом подбора получаем:
\(x_{1} = 0\)
\(x_{2} = -3.5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(2*(x)*(x+3.5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 2x²+7x

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 2x^2+7x

Показать/скрыть таблицу точек
x f(x)
-10130
-9.5114
-999
-8.585
-872
-7.560
-749
-6.539
-630
-5.522
-515
-4.59
-44
-3.50
-3-3
-2.5-5
-2-6
-1.5-6
-1-5
-0.5-3
00
0.54
19
1.515
222
2.530
339
3.549
460
4.572
585
5.599
6114
6.5130
7147
7.5165
8184
8.5204
9225
9.5247
10270

Похожие калькуляторы:

Добавить комментарий