Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(2 * x^{2} + 11 * x + 5\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \(11^{2} - 4 * 2 * 5\) = \(121 - 40\) = 81

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{-11 + \sqrt{81}}{2*2}\) = \(\frac{-11 + 9}{4}\) = -0.5 (-1/2)

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{-11 - \sqrt{81}}{2*2}\) = \(\frac{-11 - 9}{4}\) = -5

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{11}{2}*x+\frac{5}{2}\) = \(x^{2} + 5.5 * x + 2.5\)

Итого, имеем приведенное уравнение:
\(x^{2} + 5.5 * x + 2.5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=2.5\)
\(x_{1}+x_{2}=-5.5\)

Методом подбора получаем:
\(x_{1} = -0.5 (-1/2)\)
\(x_{2} = -5\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(2*(x+0.5)*(x+5) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 2x²+11x+5

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 2x^2+11x+5

Показать/скрыть таблицу точек
x f(x)
-1095
-9.581
-968
-8.556
-845
-7.535
-726
-6.518
-611
-5.55
-50
-4.5-4
-4-7
-3.5-9
-3-10
-2.5-10
-2-9
-1.5-7
-1-4
-0.50
05
0.511
118
1.526
235
2.545
356
3.568
481
4.595
5110
5.5126
6143
6.5161
7180
7.5200
8221
8.5243
9266
9.5290
10315

Похожие калькуляторы:

Добавить комментарий