Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(2 * x^{2} - 8 * x - 10\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-8)^{2} - 4 * 2 *(-10)\) = \(64 +80\) = 144

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+8 + \sqrt{144}}{2*2}\) = \(\frac{+8 + 12}{4}\) = 5

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+8 - \sqrt{144}}{2*2}\) = \(\frac{+8 - 12}{4}\) = -1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-8}{2}*x+\frac{-10}{2}\) = \(x^{2} -4 * x -5\)

Итого, имеем приведенное уравнение:
\(x^{2} -4 * x -5 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-5\)
\(x_{1}+x_{2}=4\)

Методом подбора получаем:
\(x_{1} = 5\)
\(x_{2} = -1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(2*(x-5)*(x+1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 2x²-8x-10

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 2x^2-8x-10

Показать/скрыть таблицу точек
x f(x)
-10270
-9.5246.5
-9224
-8.5202.5
-8182
-7.5162.5
-7144
-6.5126.5
-6110
-5.594.5
-580
-4.566.5
-454
-3.542.5
-332
-2.522.5
-214
-1.56.5
-10
-0.5-5.5
0-10
0.5-13.5
1-16
1.5-17.5
2-18
2.5-17.5
3-16
3.5-13.5
4-10
4.5-5.5
50
5.56.5
614
6.522.5
732
7.542.5
854
8.566.5
980
9.594.5
10110

Похожие калькуляторы:

Добавить комментарий