Калькулятор квадратных уравнений

Введите данные:

Параметр a
Параметр b
Параметр с

Округление:

Знаков после запятой

* - обязательно заполнить

Уравнение:

\(a * x^{2} + b * x + c\) = \(2 * x^{2} - 6 * x - 8\) = 0

Дискриминант:

\(D = b^{2} - 4 * a * c\) = \((-6)^{2} - 4 * 2 *(-8)\) = \(36 +64\) = 100

Корни квадратного уравнения:

\(x_{1} = \frac{-b + \sqrt{D}}{2*a}\) = \(\frac{+6 + \sqrt{100}}{2*2}\) = \(\frac{+6 + 10}{4}\) = 4

\(x_{2} = \frac{-b - \sqrt{D}}{2*a}\) = \(\frac{+6 - \sqrt{100}}{2*2}\) = \(\frac{+6 - 10}{4}\) = -1

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
\(\frac{a}{a}x^{2}+\frac{b}{a}*x+\frac{c}{a}\) = \(x^{2}+\frac{-6}{2}*x+\frac{-8}{2}\) = \(x^{2} -3 * x -4\)

Итого, имеем приведенное уравнение:
\(x^{2} -3 * x -4 = 0\)

Теорема Виета выглядит следующим образом:
\(x_{1}*x_{2}=c\)
\(x_{1}+x_{2}=-b\)

Мы получаем следующую систему уравнений:
\(x_{1}*x_{2}=-4\)
\(x_{1}+x_{2}=3\)

Методом подбора получаем:
\(x_{1} = 4\)
\(x_{2} = -1\)

Разложение на множители

Разложение происходит по формуле:
\(a*(x-x_{1})*(x-x_{2}) = 0\)

То есть у нас получается:
\(2*(x-4)*(x+1) = 0\)

Основной калькулятор для решения квадратных уравнений

График функции y = 2x²-6x-8

Функция (можно несколько через ; )

Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово "авто" или оставить поля пустыми (эквивалентно "авто")

Интервал по оси X
Интервал по оси Y
Шаг

Округление:

Знаков после запятой

* - обязательно заполнить

Таблица точек функции f(x) = 2x^2-6x-8

Показать/скрыть таблицу точек
x f(x)
-10252
-9.5229.5
-9208
-8.5187.5
-8168
-7.5149.5
-7132
-6.5115.5
-6100
-5.585.5
-572
-4.559.5
-448
-3.537.5
-328
-2.519.5
-212
-1.55.5
-10
-0.5-4.5
0-8
0.5-10.5
1-12
1.5-12.5
2-12
2.5-10.5
3-8
3.5-4.5
40
4.55.5
512
5.519.5
628
6.537.5
748
7.559.5
872
8.585.5
9100
9.5115.5
10132

Похожие калькуляторы:

Добавить комментарий